Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266644

RESUMO

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Fosforilação , Encéfalo/metabolismo , Neurônios/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Piruvatos/metabolismo , Genes Precoces
3.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681413

RESUMO

Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.


Assuntos
Neoplasias Ósseas , Osteoartrite , Humanos , Animais , Camundongos , Fator 4 Semelhante a Kruppel , Osteoartrite/tratamento farmacológico , Inflamação , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
4.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397995

RESUMO

Numerous studies have investigated changes in protein expression at the system level using proteomic mass spectrometry, but only recently have studies explored the structure of proteins at the proteome level. We developed covalent protein painting (CPP), a protein footprinting method that quantitatively labels exposed lysine, and have now extended the method to whole intact animals to measure surface accessibility as a surrogate of in vivo protein conformations. We investigated how protein structure and protein expression change as Alzheimer's disease (AD) progresses by conducting in vivo whole animal labeling of AD mice. This allowed us to analyze broadly protein accessibility in various organs over the course of AD. We observed that structural changes of proteins related to 'energy generation,' 'carbon metabolism,' and 'metal ion homeostasis' preceded expression changes in the brain. We found that proteins in certain pathways undergoing structural changes were significantly co-regulated in the brain, kidney, muscle, and spleen.

5.
bioRxiv ; 2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37066274

RESUMO

Perineuronal nets (PNN), a specialized form of ECM (?), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesis that PNNs serve as gatekeepers that guard and protect synaptic territory, and thus may stabilize an engram circuit. We present high-resolution, and 3D EM images of PNN- engulfed neurons showing that synapses occupy the PNN holes, and that invasion of other cellular components are rare. PNN constituents are long-lived and can be eroded faster in an enriched environment, while synaptic proteins have high turnover rate. Preventing PNN erosion by using pharmacological inhibition of PNN-modifying proteases or MMP9 knockout mice allowed normal fear memory acquisition but diminished remote-memory stabilization, supporting the above hypothesis. Significance: In this multidisciplinary work, we challenge the hypothesis that the pattern of holes in the perineuronal nets (PNN) hold the code for very-long-term memories. The scope of this work might lead us closer to the understanding of how we can vividly remember events from childhood to death bed. We postulate that the PNN holes hold the code for the engram. To test this hypothesis, we used three independent experimental strategies; high-resolution 3D electron microscopy, Stable Isotop Labeling in Mammals (SILAM) for proteins longevity, and pharmacologically and genetically interruption of memory consolidation in fear conditioning experiments. All of these experimental results did not dispute the PNN hypothesis.

6.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993270

RESUMO

For decades, the expression of immediate early genes (IEGs) such as c- fos has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity (i.e., inhibition). Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected neuronal inhibition across the brain induced by a wide range of factors including general anesthesia, sensory experiences, and natural behaviors. Thus, as an in vivo marker for neuronal inhibition, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.

7.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168169

RESUMO

Genetic analyses of Schizophrenia (SCZ) patients have identified thousands of risk factors. In silico protein-protein interaction (PPI) network analysis has provided strong evidence that disrupted PPI networks underlie SCZ pathogenesis. In this study, we performed in vivo PPI analysis of several SCZ risk factors in the rodent brain. Using endogenous antibody immunoprecipitations coupled to mass spectrometry (MS) analysis, we constructed a SCZ network comprising 1612 unique PPI with a 5% FDR. Over 90% of the PPI were novel, reflecting the lack of previous PPI MS studies in brain tissue. Our SCZ PPI network was enriched with known SCZ risk factors, which supports the hypothesis that an accumulation of disturbances in selected PPI networks underlies SCZ. We used Stable Isotope Labeling in Mammals (SILAM) to quantitate phencyclidine (PCP) perturbations in the SCZ network and found that PCP weakened most PPI but also led to some enhanced or new PPI. These findings demonstrate that quantitating PPI in perturbed biological states can reveal alterations to network biology.

8.
J Neurosci ; 42(42): 7900-7920, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261270

RESUMO

Neuronal activity initiates signaling cascades that culminate in diverse outcomes including structural and functional neuronal plasticity, and metabolic changes. While studies have revealed activity-dependent neuronal cell type-specific transcriptional changes, unbiased quantitative analysis of cell-specific activity-induced dynamics in newly synthesized proteins (NSPs) synthesis in vivo has been complicated by cellular heterogeneity and a relatively low abundance of NSPs within the proteome in the brain. Here we combined targeted expression of mutant MetRS (methionine tRNA synthetase) in genetically defined cortical glutamatergic neurons with tight temporal control of treatment with the noncanonical amino acid, azidonorleucine, to biotinylate NSPs within a short period after pharmacologically induced seizure in male and female mice. By purifying peptides tagged with heavy or light biotin-alkynes and using direct tandem mass spectrometry detection of biotinylated peptides, we quantified activity-induced changes in cortical glutamatergic neuron NSPs. Seizure triggered significant changes in ∼300 NSPs, 33% of which were decreased by seizure. Proteins mediating excitatory and inhibitory synaptic plasticity, including SynGAP1, Pak3, GEPH1, Copine-6, and collybistin, and DNA and chromatin remodeling proteins, including Rad21, Smarca2, and Ddb1, are differentially synthesized in response to activity. Proteins likely to play homeostatic roles in response to activity, such as regulators of proteastasis, intracellular ion control, and cytoskeleton remodeling proteins, are activity induced. Conversely, seizure decreased newly synthetized NCAM, among others, suggesting that seizure induced degradation. Overall, we identified quantitative changes in the activity-induced nascent proteome from genetically defined cortical glutamatergic neurons as a strategy to discover downstream mediators of neuronal plasticity and generate hypotheses regarding their function.SIGNIFICANCE STATEMENT Activity-induced neuronal and synaptic plasticity are mediated by changes in the protein landscape, including changes in the activity-induced newly synthesized proteins; however, identifying neuronal cell type-specific nascent proteome dynamics in the intact brain has been technically challenging. We conducted an unbiased proteomic screen from which we identified significant activity-induced changes in ∼300 newly synthesized proteins in genetically defined cortical glutamatergic neurons within 20 h after pharmacologically induced seizure. Bioinformatic analysis of the dynamic nascent proteome indicates that the newly synthesized proteins play diverse roles in excitatory and inhibitory synaptic plasticity, chromatin remodeling, homeostatic mechanisms, and proteasomal and metabolic functions, extending our understanding of the diversity of plasticity mechanisms.


Assuntos
Aminoacil-tRNA Sintetases , Proteoma , Masculino , Feminino , Camundongos , Animais , Proteoma/metabolismo , Proteômica/métodos , Biotina/metabolismo , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Aminoácidos/metabolismo , Metionina/metabolismo , Alcinos/metabolismo , Convulsões/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
9.
Cell Rep ; 38(4): 110287, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081342

RESUMO

Intercellular transfer of toxic proteins between neurons is thought to contribute to neurodegenerative disease, but whether direct interneuronal protein transfer occurs in the healthy brain is not clear. To assess the prevalence and identity of transferred proteins and the cellular specificity of transfer, we biotinylated retinal ganglion cell proteins in vivo and examined biotinylated proteins transported through the rodent visual circuit using microscopy, biochemistry, and mass spectrometry. Electron microscopy demonstrated preferential transfer of biotinylated proteins from retinogeniculate inputs to excitatory lateral geniculate nucleus (LGN) neurons compared with GABAergic neurons. An unbiased mass spectrometry-based screen identified ∼200 transneuronally transported proteins (TNTPs) isolated from the visual cortex. The majority of TNTPs are present in neuronal exosomes, and virally expressed TNTPs, including tau and ß-synuclein, were detected in isolated exosomes and postsynaptic neurons. Our data demonstrate transfer of diverse endogenous proteins between neurons in the healthy intact brain and suggest that TNTP transport may be mediated by exosomes.


Assuntos
Comunicação Celular/fisiologia , Exossomos/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Técnicas de Rastreamento Neuroanatômico , Proteômica , Ratos , Ratos Wistar , Vias Visuais/metabolismo , Xenopus
10.
iScience ; 24(11): 103321, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34816099

RESUMO

A single protein can be multifaceted depending on the cellular contexts and interacting molecules. LIN28A is an RNA-binding protein that governs developmental timing, cellular proliferation, differentiation, stem cell pluripotency, and metabolism. In addition to its best-known roles in microRNA biogenesis, diverse molecular roles have been recognized. In the nervous system, LIN28A is known to play critical roles in proliferation and differentiation of neural progenitor cells (NPCs). We profiled the endogenous LIN28A-interacting proteins in NPCs differentiated from human induced pluripotent stem (iPS) cells using immunoprecipitation and liquid chromatography-tandem mass spectrometry. We identified over 500 LIN28A-interacting proteins, including 156 RNA-independent interactors. Functions of these proteins span a wide range of gene regulatory processes. Prompted by the interactome data, we revealed that LIN28A may impact the subcellular distribution of its interactors and stress granule formation upon oxidative stress. Overall, our analysis opens multiple avenues for elaborating molecular roles and characteristics of LIN28A.

11.
J Proteome Res ; 20(1): 763-775, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147027

RESUMO

Accumulation of aggregated amyloid beta (Aß) in the brain is believed to impair multiple cellular pathways and play a central role in Alzheimer's disease pathology. However, how this process is regulated remains unclear. In theory, measuring protein synthesis is the most direct way to evaluate a cell's response to stimuli, but to date, there have been few reliable methods to do this. To identify the protein regulatory network during the development of Aß deposition in AD, we applied a new proteomic technique to quantitate newly synthesized protein (NSP) changes in the cerebral cortex and hippocampus of 2-, 5-, and 9-month-old APP/PS1 AD transgenic mice. This bio-orthogonal noncanonical amino acid tagging analysis combined PALM (pulse azidohomoalanine labeling in mammals) and HILAQ (heavy isotope labeled AHA quantitation) to reveal a comprehensive dataset of NSPs prior to and post Aß deposition, including the identification of proteins not previously associated with AD, and demonstrated that the pattern of differentially expressed NSPs is age-dependent. We also found dysregulated vesicle transportation networks including endosomal subunits, coat protein complex I (COPI), and mitochondrial respiratory chain throughout all time points and two brain regions. These results point to a pathological dysregulation of vesicle transportation which occurs prior to Aß accumulation and the onset of AD symptoms, which may progressively impact the entire protein network and thereby drive neurodegeneration. This study illustrates key pathway regulation responses to the development of AD pathogenesis by directly measuring the changes in protein synthesis and provides unique insights into the mechanisms that underlie AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteômica
12.
Cell Death Dis ; 11(10): 828, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024077

RESUMO

Amyloid beta (Aß) accumulates within neurons in the brains of early stage Alzheimer's disease (AD) patients. However, the mechanism underlying its toxicity remains unclear. Here, a triple omics approach was used to integrate transcriptomic, proteomic, and metabolomic data collected from a nerve cell model of the toxic intracellular aggregation of Aß. It was found that intracellular Aß induces profound changes in the omics landscape of nerve cells that are associated with a pro-inflammatory, metabolic reprogramming that predisposes cells to die via the oxytosis/ferroptosis regulated cell death pathway. Notably, the degenerative process included substantial alterations in glucose metabolism and mitochondrial bioenergetics. Our findings have implications for the understanding of the basic biology of proteotoxicity, aging, and AD as well as for the development of future therapeutic interventions designed to target the oxytosis/ferroptosis regulated cell death pathway in the AD brain.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Morte Celular/fisiologia , Ferroptose/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Morte Celular/genética , Humanos , Mitocôndrias/metabolismo , Proteômica/métodos
13.
Sci Rep ; 10(1): 15983, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994440

RESUMO

Protein degradation is an essential mechanism for maintaining proteostasis in response to internal and external perturbations. Disruption of this process is implicated in many human diseases. We present a new technique, QUAD (Quantification of Azidohomoalanine Degradation), to analyze the global degradation rates in tissues using a non-canonical amino acid and mass spectrometry. QUAD analysis reveals that protein stability varied within tissues, but discernible trends in the data suggest that cellular environment is a major factor dictating stability. Within a tissue, different organelles and protein functions were enriched with different stability patterns. QUAD analysis demonstrated that protein stability is enhanced with age in the brain but not in the liver. Overall, QUAD allows the first global quantitation of protein stability rates in tissues, which will allow new insights and hypotheses in basic and translational research.


Assuntos
Encéfalo/metabolismo , Fígado/metabolismo , Proteoma/química , Proteoma/metabolismo , Fatores Etários , Alanina/análogos & derivados , Alanina/química , Animais , Química Click , Masculino , Espectrometria de Massas , Camundongos , Especificidade de Órgãos , Estabilidade Proteica , Proteólise , Proteostase
14.
J Proteome Res ; 19(8): 3153-3161, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510229

RESUMO

Data-independent acquisition (DIA) is a promising technique for the proteomic analysis of complex protein samples. A number of studies have claimed that DIA experiments are more reproducible than data-dependent acquisition (DDA), but these claims are unsubstantiated since different data analysis methods are used in the two methods. Data analysis in most DIA workflows depends on spectral library searches, whereas DDA typically employs sequence database searches. In this study, we examined the reproducibility of the DIA and DDA results using both sequence database and spectral library search. The comparison was first performed using a cell lysate and then extended to an interactome study. Protein overlap among the technical replicates in both DDA and DIA experiments was 30% higher with library-based identifications than with sequence database identifications. The reproducibility of quantification was also improved with library search compared to database search, with the mean of the coefficient of variation decreasing more than 30% and a reduction in the number of missing values of more than 35%. Our results show that regardless of the acquisition method, higher identification and quantification reproducibility is observed when library search was used.


Assuntos
Proteínas , Proteômica , Análise de Dados , Reprodutibilidade dos Testes
15.
Cell Rep ; 28(7): 1935-1947.e5, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412257

RESUMO

The brain processes information and generates cognitive and motor outputs through functions of spatially organized proteins in different types of neurons. More complete knowledge of proteins and their distributions within neuronal compartments in intact circuits would help in the understanding of brain function. We used unbiased in vivo protein labeling with intravitreal NHS-biotin for discovery and analysis of endogenous axonally transported proteins in the visual system using tandem mass spectrometric proteomics, biochemistry, and both light and electron microscopy. Purification and proteomic analysis of biotinylated peptides identified ∼1,000 proteins transported from retinal ganglion cells into the optic nerve and ∼575 biotinylated proteins recovered from presynaptic compartments of lateral geniculate nucleus and superior colliculus. Approximately 360 biotinylated proteins were differentially detected in the two retinal targets. This study characterizes axonally transported proteins in the healthy adult visual system by analyzing proteomes from multiple compartments of retinal ganglion cell projections in the intact brain.


Assuntos
Transporte Axonal , Nervo Óptico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Células Ganglionares da Retina/metabolismo , Vias Visuais/metabolismo , Animais , Masculino , Nervo Óptico/citologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Vias Visuais/citologia
16.
J Proteome Res ; 18(8): 2999-3008, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31260318

RESUMO

The characterization of complex biological systems based on high-throughput protein quantification through mass spectrometry commonly involves differential expression analysis between replicate samples originating from different experimental conditions. Here we present Proteomics INTegrator (PINT), a new user-friendly Web-based platform-independent system to store, visualize, and query proteomics experiment results. PINT provides an extremely flexible query interface that allows advanced Boolean algebra-based data filtering of many different proteomics features such as confidence values, abundance levels or ratios, data set overlaps, sample characteristics, as well as UniProtKB annotations, which are transparently incorporated into the system. In addition, PINT allows developers to incorporate data visualization and analysis tools, such as PSEA-Quant and Reactome pathway analysis, for data set enrichment analysis. PINT serves as a centralized hub for large-scale proteomics data and as a platform for data analysis, facilitating the interpretation of proteomics results and expediting biologically relevant conclusions.


Assuntos
Bases de Dados de Proteínas/estatística & dados numéricos , Proteínas/genética , Proteômica/estatística & dados numéricos , Software , Humanos , Internet , Espectrometria de Massas/estatística & dados numéricos , Proteômica/métodos , Interface Usuário-Computador
17.
Proteomes ; 6(4)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544849

RESUMO

Drug addiction is a complex disorder driven by dysregulation in molecular signaling across several different brain regions. Limited therapeutic options currently exist for treating drug addiction and related psychiatric disorders in clinical populations, largely due to our incomplete understanding of the molecular pathways that influence addiction pathology. Recent work provides strong evidence that addiction-related behaviors emerge from the convergence of many subtle changes in molecular signaling networks that include neuropeptides (neuropeptidome), protein-protein interactions (interactome) and post-translational modifications such as protein phosphorylation (phosphoproteome). Advancements in mass spectrometry methodology are well positioned to identify these novel molecular underpinnings of addiction and further translate these findings into druggable targets for therapeutic development. In this review, we provide a general perspective of the utility of novel mass spectrometry-based approaches for addressing critical questions in addiction neuroscience, highlighting recent innovative studies that exemplify how functional assessments of the neuroproteome can provide insight into the mechanisms of drug addiction.

18.
Nat Protoc ; 13(8): 1744-1762, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30038347

RESUMO

Measuring proteome response to perturbations is critical for understanding the underlying mechanisms involved. Traditional quantitative proteomic methods are limited by the large numbers of proteins in the proteome and the mass spectrometer's dynamic range. A previous method uses the biorthogonal reagent azidohomoalanine (AHA), a methionine analog, for labeling, enrichment and detection of newly synthesized proteins (NSPs). Newly synthesized AHA proteins can be coupled to biotin via CuAAC-mediated click chemistry and enriched using avidin-based affinity purification. The combination of AHA-mediated NSP labeling with metabolic stable isotope labeling allows quantitation of low-abundant, newly secreted proteins by mass spectrometry (MS). However, the resulting multiplicity of labeling complicates NSP analysis. We developed a new NSP quantification strategy, called HILAQ (heavy isotope-labeled azidohomoalanine quantification), that uses a heavy isotope-labeled AHA molecule to enable NSP labeling, enrichment, identification and quantification. In addition, the AHA-peptide enrichment used in HILAQ improves both the identification and quantification of NSPs over AHA-protein enrichment. Here, we provide a description of the HILAQ method that includes procedures for (i) pulse-labeling and harvesting NSPs; (ii) addition of biotin by click reaction; (iii) protein precipitation; (iv) protein digestion; (v) enrichment of AHA-biotin peptides by NeutrAvidin beads and four-step elution; (vi) MS analysis; and (vii) data analysis for the identification and quantification of NSPs by ProLuCID and pQuant. We demonstrate our HILAQ approach by identifying NSPs from cell cultures, but we anticipate that it can be adapted for applications in animal models. The whole protocol takes ~6 d to complete.


Assuntos
Técnicas de Química Analítica/métodos , Proteínas/análise , Proteoma/análise , Proteômica/métodos , Linhagem Celular , Humanos , Proteínas/isolamento & purificação , Proteoma/isolamento & purificação , Coloração e Rotulagem/métodos
19.
J Mol Cell Cardiol ; 121: 163-172, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30009778

RESUMO

Cardiac remodeling (CR) is a complex dynamic process common to many heart diseases. CR is characterized as a temporal progression of global adaptive and maladaptive perturbations. The complex nature of this process clouds a comprehensive understanding of CR, but greater insight into the processes and mechanisms has potential to identify new therapeutic targets. To provide a deeper understanding of this important cardiac process, we applied a new proteomic technique, PALM (Pulse Azidohomoalanine in Mammals), to quantitate the newly-synthesized protein (NSP) changes during the progression of isoproterenol (ISO)-induced CR in the mouse left ventricle. This analysis revealed a complex combination of adaptive and maladaptive alterations at acute and prolonged time points including the identification of proteins not previously associated with CR. We also combined the PALM dataset with our published protein turnover rate dataset to identify putative biochemical mechanisms underlying CR. The novel integration of analyzing NSPs together with their protein turnover rates demonstrated that alterations in specific biological pathways (e.g., inflammation and oxidative stress) are produced by differential regulation of protein synthesis and degradation.


Assuntos
Insuficiência Cardíaca/genética , Coração/fisiopatologia , Proteoma/genética , Remodelação Ventricular/genética , Animais , Coração/crescimento & desenvolvimento , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Humanos , Isoproterenol/toxicidade , Camundongos , Miocárdio/metabolismo , Biossíntese de Proteínas/genética
20.
ACS Chem Neurosci ; 9(12): 3072-3085, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30053369

RESUMO

Kinases are a major clinical target for human diseases. Identifying the proteins that interact with kinases in vivo will provide information on unreported substrates and will potentially lead to more specific methods for therapeutic kinase regulation. Here, endogenous immunoprecipitations of evolutionally distinct kinases (i.e., Akt, ERK2, and CAMK2) from rodent hippocampi were analyzed by mass spectrometry to generate three highly confident kinase protein-protein interaction networks. Proteins of similar function were identified in the networks, suggesting a universal model for kinase signaling complexes. Protein interactions were observed between kinases with reported symbiotic relationships. The kinase networks were significantly enriched in genes associated with specific neurodevelopmental disorders providing novel structural connections between these disease-associated genes. To demonstrate a functional relationship between the kinases and the network, pharmacological manipulation of Akt in hippocampal slices was shown to regulate the activity of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel(HCN1), which was identified in the Akt network. Overall, the kinase protein-protein interaction networks provide molecular insight of the spatial complexity of in vivo kinase signal transduction which is required to achieve the therapeutic potential of kinase manipulation in the brain.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Imunoprecipitação , Sistema de Sinalização das MAP Quinases , Espectrometria de Massas , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mapas de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...